
On Caching for Local Graph Clustering Algorithms

René Speck and Axel-Cyrille Ngonga Ngomo

Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,

{speck|ngonga}@informatik.uni-leipzig.de

Abstract. In recent years, local graph clustering techniques have been utilized as
devices to unveil the structured hidden of large networks. With the ever growing
size of the data sets generated in domains of applications as diverse as biomedicine
and natural language processing, time-efficiency has become a problem of grow-
ing importance. We address the improvement of the runtime of local graph clus-
tering algorithms by presenting the novel caching approach SGD?. This strategy
combines the Segmented Least Recently Used and Greedy Dual strategies. By
applying different caching strategies to the unprotected and protected segments
of a cache, SGD? displays a superior hitrate and can therewith significantly re-
duce the runtime of clustering algorithms. We evaluate our approach on four real
protein-protein-interaction graphs. Our evaluation shows that SGD? achieves a
considerably higher hitrate than state-of-the-art approaches. In addition, we show
how by combining caching strategies with a simple data reordering approach, we
can significantly improves the hitrate of state-of-the-art caching strategies.

Keywords: caching, local graph clustering, large networks

1 Introduction

Graphs are a natural representation for a large number of real-world problems and
datasets ranging from protein-protein-interaction networks [1] to external memory data [2].
Over the last years, a large number of approaches have been developed to achieve the
goal of clustering graphs with high accuracy [3, 4]. While the accuracy of these ap-
proaches is being studied continuously, improving their performance remains a major
challenge [4, 5]. Current approaches to graph clustering can be subdivided into two
main categories: global approaches, which require knowledge about the whole graph
for clustering and local approaches, which find a solution vertex-wise without necessi-
tating knowledge of the whole graph [2]. Local graph clustering algorithms were orig-
inally conceived to allow the detection of clusters around a small set N of nodes of
interest, especially when dealing with very large graphs. However, local clustering ap-
proaches are nowadays often used to cluster whole graphs [6, 7]. One problem that then
arises is the scalability of these approaches [5]. In this paper, we address the problem
of improving the runtime of local graph clustering algorithms that allow overlapping
clusters, especially when the magnitude of the set N of input vertices to process is
close to the magnitude of the set of vertices. We present the novel caching strategy
SGD? (Segmented Greedy Dual). SGD? combines the Segmented Least Recently Used

(SLRU) [8] and Greedy Dual (GD?) strategies to improve the hitrate during the cluster-
ing process so as to further reduce its runtime. In addition, we show how a simple node
reordering strategy can further improve the hitrate of caching algorithms. We evaluate
our approaches by using the BorderFlow algorithm1 [9] on protein-protein-interaction
(PPI) networks [1]. We chose BorderFlow because of its superior accuracy on PPI net-
works [6] and because it has already been applied in several domains including concept
location in software development [7] and query clustering for benchmarking [10]. Our
experiments show that SGD? outperforms state-of-the-art approaches with respect to its
hit-rate and space requirements. In addition, we can more than quadruple the hitrate of
common caching strategies and of SGD? by combining them with node reordering. By
these means, we can reduce the runtime of BorderFlow to less than 25% of its original.

The rest of this paper is structured as follows: In the next section, we present some
work related to this paper. Then, we present necessary preliminaries. Thereafter, we
present our approaches, SGD? and RP. In the evaluation section, we compare our ap-
proaches with seven state-of-the-art caching approaches. Finally, we present relevant
related work on caching for local graph clustering and conclude.

2 Related Work

A vast amount of literature has been produced to elucidate the problem of graph clus-
tering [3, 4]. Still, with the growth of the size of the dataset at hand, improving the run-
time of graph clustering becomes an increasingly urgent problem. Several approaches
have been developed with the goal of improving the performance of graph clustering
approaches. Overall, most of these approaches fall into one of the following two cate-
gories: sampling (also called graph sparsification) [11, 5] and caching [12]. Sampling is
a generic solution to reducing the runtime of algorithms [13]. The idea here is to reduce
the runtime of clustering approaches by computing a smaller representative subset of
the data at hand and running the computation on this data set. While this approach can
get rid of noise in the data, the alteration of the data set at hand might lead to undesired
side-effects when combined with certain clustering strategies.

Caching follows a different idea and tries to store and reuse as much intermediary
knowledge as possible to improve the runtime of the given algorithm. One of the most
commonly used approaches is the Least Recently Used algorithm [14]. The idea be-
hind this approach is simply to evict the entry that led to the oldest hit when the cache
gets full. One of the main drawbacks of this approach is that the cache is not scan-
resistant. Meanwhile, a large number of scan-resistant extensions of this approach have
been created. For example, SLRU [8] extends LRU by splitting the cache into a pro-
tected and an unprotected area. The Least Frequently Used (LFU) [15] approach relies
on a different intuition. Here, a count of the number of accesses to entries in the cache
is kept. The cache evicts the entries with the smallest frequency count when neces-
sary. This approach is scan-resistant but does not make use of the locality of reference.
Consequently, it was extended by window-based LFU [16], sliding window-based ap-
proaches [17] and dynamic aging (LFUDA) [18] amongst others. Another commonly

1 We used the free version of the algorithm whose code is available at http://borderflow.
sf.net.

used caching strategy is based on the idea of first-in-first-out (FIFO) lists [19]. When
the cache is full, this approach evicts the entry that have been longest in the cache. The
main drawback of this approach is that it does not make use of locality. Thus, it was
extended in several ways, for example by the “FIFO second chance” approach [19].
Other strategies such as Greedy Dual (GD?) [20] use a cost model to determine which
entries to evict.

3 Preliminaries and Notation

3.1 Caching

The aim of caching is to reduce the runtime of algorithms by storing intermediate results
of expensive computations. Formally, let O = {o1...on} be a set of results that can be
cached. Let cost : O → R+ be a function that maps each object o with the cost of its
computation. Furthermore, let size : O → R+ be a function that maps each object o
to its size. A cache C of maximal size Cmax (with Cmax ≥ max

o∈O
size(o)) is a subset of

O such that
∑
x∈C

size(x) ≤ Cmax. An algorithm A that relies on caching issues a query

sequence σ : T → O (T ⊆ N) to the cache C. At each time t ∈ T , the query σ(t) for an
object o ∈ O is sent to the cache C. If the cache contains the object o, it simply returns
the corresponding solution to the clustering problem (this is usually called a cache hit).
Else, C returns ∅ (cache miss). In case of a hit, the cost for cost(σ(t)) is a constant c
called the cache latency. In case of a miss, A must compute o with the cost cost(o),
leading to cost(σ(t)) = cost(o). The result of the computation is then forwarded to
C. As cost(o) is usually vastly superior to c, we will assume c = 0 in the remainder
of this paper. Caching algorithms aim to minimize the total cost

∑
t∈T

cost(σ(t)) of the

sequence σ by generating a sequence of cache states Ct for each time t that abide by
|Ct|.

3.2 Local Graph Clustering with Overlapping Clusters

LetG = (V,E,w) be a graph, where V is the set of edges,E ⊆ V×V is the set of edges
and w : E → R+ the weight function that assign a weight to each edge of the graph G.
A graph clustering algorithm aims to determine a set V = {V1, V2, ..., Vn} of subsets of
V that maximize a certain fitness function [3]. Some local graph clustering algorithms
allow for clusters to share nodes, i.e., |Vi ∩ Vj | > 0 with i 6= j. Such algorithms
are called non-partitioning approaches [21]. For the purpose of clustering, local graph
clustering algorithms rely on a set of nodes N ⊆ V as input. For each node of interest
n ∈ N , they aim to discover a nearby cluster2. This is carried out by running iterative
approaches of which most rely on local search [22, 23, 9] and random walks [24–26].
The idea behind these iterative procedures is to carry a simple operation repeatedly until
the fitness function is maximized. For example, search algorithms begin with an initial
solution S0(n) for n ∈ N . At each step t they compute the current solution St(n) by

2 In most cases, n must be an element of this cluster.

altering the previous solution St−1(n). This is carried out by adding a subset of the
adjacent nodes of St−1(n) to the solution and simultaneously removing a subset of the
nodes of St−1(n) from it until the fitness function is maximized. They then return the
final solution S(n). The insight that makes caching utilizable to reduce the runtime of
local graph clustering algorithms is that if an algorithm generates the same intermediate
solution for two different nodes, then the final solution for these nodes will be the same,
i.e., ∀n, n′ ∈ N St

1(n) = St
2(n
′) → S(n) = S(n′). Thus, by storing some elements

of the sequence of solutions computed for previous nodes n and the solution S(n) to
which they led, it becomes possible to return the right solution of a node n′ without
having to compute the whole sequence of solutions. However, it is impossible to store
all elements of the sequence of solutions generated by local graph clustering algorithms
for large input graphs and large N . The first innovation of this paper is a novel caching
approach for local graph clustering dubbed SGD? that outperforms the state-of-the-art
w.r.t. its hitrate. Note thatN is a set, thus the order in which its nodes are processed does
not affect the final solution of the clustering. Consequently, by finding an ordering of
nodes that ensures that the sequence of solutions generated for subsequent nodes share
a common intermediate as early as possible in the computation, we can improve the
hitrate of caching algorithms and therewith also the total runtime of algorithms. This is
the goal of the second innovation of this paper, our node reordering strategy.

4 Segmented Greedy Dual

SGD? combines the ideas of two caching strategies: SLRU and GD?. SLRU is a scan-
resistant extension of LRU [14], one of the most commonly used caching strategies.
Like LRU, it does not take the cost of computing an object into consideration and thus
tends to evict very expensive objects for the sake of less expensive one. GD? on the
other hand is an extension of the Landlord algorithm [27] which takes the costs and the
number hit(o) of cache hit that return o into consideration.

The idea behind SGD? is to combine these strategies to a scan-resistant and cost-
aware caching approach. To achieve this goal, SGD? splits the cache into two parts: a
protected segment and an unprotected segment. The unprotected segment stores all the
St(n) ⊆ V that are generated while computing a solution for the input node n ∈ N .
The protected segment on the other hand stores all the results that have been accessed at
least once and contain at least two nodes. While SLRU uses LRU on both the protected
and unprotected area, SGD? uses the GD? strategy on the unprotected area and the LRU
approach on the protected area. An overview of the resulting caching approach is given
in Algorithm 1. For each node n, we begin by computing the first intermediary result
for n. Then we iterate the following approach. We ask the cache for the head (i.e., the
first element) of the list S. If this element is not in the cache, we compute the next
intermediary solution and add it to the head of the list. The iteration is terminated out in
one of the following two cases. In the first case, the iteration terminates for n, returning
⊥. Then, the result is added to the list S and S is cached. In the second case, a solution
is found in the cache. Then this solution is cached. Note that this approach works for
every caching mechanism. The main difference between caching approaches is how
they implement the storage method cachePut and the data fetching method cacheGet.

Algorithm 1 Caching for local graph clustering
Require: Set of nodesN

List S
Buffer B, id
Result R = ∅
Protected segment P = ∅
Unprotected segment U = ∅
for all n ∈ N do

S =compute(n)
id =cacheGet(S)
while id == −1 do

B =compute(S)
if B == ⊥ then

cachePut(S)
R = R ∪ (n,cacheGet(S))
break

end if
S = append(B, S)
id =cacheGet(S)

end while
R = R ∪ (n, id)

end for
return R

The fetching data algorithm of the SGD? cache has two functions and is summarized
in Algorithm 2. First, it allows checking whether the data that is being required is in the
cache. Concurrently, it reorganizes the data in the cache in case of a cachehit. The SGD?

data fetching approach and works as follows: In case there is no cachehit, the cache
simply returns -1. A cache hit can occur in two ways: First, the current solution can
be contained in the protected segment of the cache. In this case, SGD? simply updates
the credit of the entry o, i.e., of the cached entry that led to finding the cached solution
to the clustering task for the current node. It then computes the id of the answer to the
current caching and returns it. Note that there is then no need to evict data, as no new
data is added. If the cache hit occurs within the unprotected segment U of the cache, the
algorithm moves the entry o that led to the hit from U to the protected segment P of the
cache. Should P exceeds its maximal size, then the elements with the smallest credit
score are evicted to the unprotected segment U of the cache until there is enough space
for o in P . o then gets inserted into P and its credit score is computed. The final step in
case of a cachehit consists of assigning all the steps that led to the solution mapped to
s. For this purpose (see Algorithm 3), each single component oi of the solution of S is
inserted into U . In case the cache would exceed its maximal size when accommodating
oi, the elements of U are evicted in ascending order of credit until enough space is
available for oi. 3

3 We implemented the approach and made it freely available at http://sourceforge.
net/projects/cugar-framework.

Algorithm 2 SGD?’s cacheGet
Require: Solution S
s = head(S)
id = −1
if s ∈ P then

credit(s) = min+ (hit(o)cost(o))
1
b

size(o)

id = id(s)
else

if s ∈ U then
id = id(s)
U = U\s
P = P ∪ s
while |P | > Cmax/2 do

o = arg min
o′∈U

credit(o′)

U = U ∪ {o}
P = P\{o}

end while
end if

end if
if id 6= −1 then

for all si ∈ S do
cachePut(si, id)

end for
end if
return id

5 Node Reordering

While SGD? outperforms the state of the art as shown in our experiments, the general
behavior of caching algorithms can be further improved when assuming that the set
N is known at the beginning of the clustering. Note that this condition is not always
given, as many practical clustering approaches process the results for known nodes of
interest to generate novel nodes of interest. Yet, when this condition is given and when
in addition the computation of a cluster for a node n does not affect the set N or the
computation of a cluster for another node n′, the order in which the nodes are drawn
from N does not alter the result of the clustering and can be dynamically changed
during the computation. By choosing the order in which this selection is carried out,
we can drastically improve the locality of caching algorithms. We propose a simple and
time-efficient approach to achieve this goal: the use of a FIFO list. For this purpose, we
extend the cachePut method as shown in Algorithm 4.

The FIFO list L simply stores the elements of N that were part of a solution (note
that the elements of a solution must not all belong to N). Instead of drawing n from
N as described in Algorithm 1, we draw the node n by taking the first element of L
if is not empty (in which case we draw one at random from N). The rationale behind
using a FIFO list is that by processing nodes n′ that are closest to the input node n first,
we can reduce the number of iterations necessary for a cache hit to occur. While this

Algorithm 3 SGD?’s cachePut
Require: Solution Si

Require: Set of input nodesN
Require: ID id

min = 0 // minimal credit
while |P |+ |U |+ size(Si) > Cmax do

o = arg min
o′∈U

credit(o′)

min = credit(o)
U = U\{o}

end while
credit(Si) = min+ (hit(o)cost(o))

1
b

size(o)

id(Si) = id
U = U ∪ {Si}

assumption might appear simplistic, our evaluation shows that it suffices to reduce the
space requirement of caches by a factor up to 40.

Algorithm 4 SGD?’s cachePut with node reordering
Require: Solution Si

Require: Set of input nodesN
Require: ID id

min = 0 // minimal credit
for all x ∈ Si do

if x /∈ L ∧ x ∈ N then
L = append(L, x)

end if
end for
while |P |+ |U |+ size(Si) > Cmax do

o = arg min
o′∈U

credit(o′)

min = credit(o)
U = U\{o}

end while
credit(Si) = min+ (hit(o)cost(o))

1
b

size(o)

id(Si) = id
U = U ∪ {Si}

6 Evaluation

6.1 Experimental Setup

As experimental data, we used four graphs resulting from high-throughput experiments
utilized in [1]. The high-throughput graphs were computed out of the datasets published

in [28] (Gavin06), [29] (Ho02), [30] (Ito01) and [31] (Krogan06).4 The graphs were
undirected and unweighted. We used the BorderFlow algorithm as clustering algorithm
because it has been shown to perform best on these data sets [6]. We compared our
approach against the standard strategies FIFO, FIFO second chance, LRU, LFU, LFU-
DA and SLRU strategies. In addition, we developed the COST strategy, which evicts
the entries with the highest costs. The idea here is that solutions St with high costs
are usually generated after a large number t of iterations. Thus, it is more sensible
to store the entries St′ that are less costly than St, as a corresponding cache hit is
more probable and would reduce the total runtime of the algorithm. We compare these
caching approaches in two series of experiments. In the first series of experiments, we
compared the hitrate of the different caching approaches without node reordering. In the
second series, we clustered exactly the same data with node reordering. In each series
of experiment, we used two different settings for N . In the first setting, S1, we used
all nodes of each graph. In the second setting, S2, we only considered the nodes with a
connectivity degree least or equal to the average degree of the graph. All measurements
were carried out at least four times on an Intel Core i3-2100 (3.1GHz) with 4GB DDR3
SDRAM running Windows 7 SP1. In the following, we report the best runtime for
each of the caching strategies. Note that the cache size is measured in the number of
intermediary results it contains.

6.2 Results

The results of the first series of experiments are shown in Fig. 1. The caching strate-
gies display similar behaviors in both settings S1 and S2. In both settings, our results
clearly show that the hitrate of SGD? is superior to that of all other strategies. Espe-
cially, we outperform the other approaches by more than 2% hitrate on the Gavin06
graph. SGD? seems to perform best when faced with graphs such that the baseline (i.e.,
the hitrate with an infinite cache) is low. This can be clearly seen in the experiments
carried out with the graph Gavin06 (see Fig. 1(a) and 1(e))). In the first setting, SGD?

reaches the baseline hitrate of 8% with a cache size of 2800 (see Fig. 1(a)), while all
other approaches require a cache size of at least 4000. Similarly, in the second setting
(see Fig. 1(e)), the maximal hitrate of 7% is reached for a cache size of 1600. An ana-
logical behavior of can be observed when processing the Krogan06 graph (see Fig. 1(c)
and 1(g))). The consequences of this behavior are obviously that our approach requires
significantly less space to achieve better runtime improvements (see Table 1). Note that
COST achieves runtimes similar to that of common strategies such as LRU and FIFO.

The results of the second series of experiments are shown in Fig. 2. The reordering
of nodes significantly improves the runtime of all caching strategies in all settings, al-
lowing all strategies apart from Cost and LFU to reach the baseline with a cache size of
100 on the full Krogan06 and Ho02 graphs (i.e., in setting S1, see Fig 2(c) and 2(d)).
In setting S2, the baseline hitrate is reached with a cache size of 50 on the same graphs
(see Fig. 2(g) and 2(h)). Therewith, node reordering can make most caching strate-
gies more than 40 times more space-efficient (compare Fig. 1(c) and 2(c)). The COST

4 All data sets used for this evaluation can be found at http://rsat.bigre.ulb.ac.be/
˜sylvain/clustering_evaluation/

(a) Gavin06 (S1) (b) Ito01 (S1) (c) Krogan06 (S1)

(d) Ho02 (S1) (e) Gavin06 (S2) (f) Ito01 (S2)

(g) Krogan06 (S2) (h) Ho02 (S2)

Fig. 1. Comparison of the hitrate of SGD? against seven other approaches

and LFU approaches not profiting maximally from the node reordering is simply due
to cache pollution. The cost-based approach deletes those elements, which required a
long processing time, the idea being that they are unlikely that they appear again. Yet,
this approach leads to the content of the cache remaining static early in the computa-
tion. Consequently, reordering the nodes does not improve the hitrate of such caches
as significantly as that of FIFO, SLRU and other strategies, especially when the cache
is small. LFU behaves similarly with respect to the hitrate score of the elements in the
cache. Overall, by combining SGD? and node reordering, we can improve the runtime
of BorderFlow to less than 25% of its original runtime on the Ito01 graph.

(a) Gavin06 (S1) (b) Ito01 (S1) (c) Krogan06 (S1)

(d) Ho02 (S1) (e) Gavin06 (S2) (f) Ito01 (S2)

(g) Krogan06 (S2) (h) Ho02 (S2)

Fig. 2. Comparison of the hitrate of SGD? against seven other approaches with node reordering

7 Conclusion and Future Work

SGD? addresses the cost-blindness of SLRU by combining it with the GD? caching
strategy. We showed that this combined strategy outperforms state-of-the-art approaches
with respect to its hitrate. We also presented an approach to improve the locality of
caching when dealing with clustering approaches where the order of the input nodes
does not alter the result of the clustering. One interesting results was that once we ap-
ply reordering to the input data (therewith improving the locality of the clustering), we
could boost the results of the FIFO caching approach and make it outperform all others

Table 1. Comparison of runtimes with cache size 300 in setting S1. The best runtimes are in
bold font. All runtimes are in ms. The columns labeled “Default” contain the runtime of our
approaches without node reordering. The columns labeled “Reordered” contain the runtimes after
the reordering has been applied.

Gavin06 Ho02 Ito01 Krogan06
Default Reordered Default Reordered Default Reordered Default Reordered

Baseline 14944 14944 8938 8938 42775 42775 25630 25630
FIFO 14196 9921 6848 3759 17316 9578 23758 12558
FIFO2ndChance 14071 9937 6692 3790 15303 9594 23868 12604
LRU 14164 9968 6708 3790 13525 9578 23899 12667
LFU 14008 12214 6099 5038 12324 11029 23244 19156
LFU-DA 14102 9984 6645 3790 12745 9609 23821 12698
SLRU 13946 9937 6052 3790 12370 9531 23197 12558
SGD? 13821 9968 5912 3759 12261 9687 22916 12682
COST 13915 11200 6318 3775 12604 9578 21980 14835

in most cases. In future work, we will combine our caching approach with other clus-
tering algorithms. Note that our caching approach is not limited to graph clustering and
can be easily applied to any other problem that necessitates caching. Consequently, we
will also apply SGD? to other tasks such as the management of very large graphs.

References

1. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction
networks. BMC Bioinformatics 7 (November 2006) 488–506

2. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory data graphs.
PVLDB 1(1) (2008) 1189–1204

3. Schaeffer, S.: Graph clustering. Computer Science Review 1(1) (2007) 27–64
4. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010) 75 – 174
5. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable clustering.

In: SIGMOD ’11. (2011) 721–732
6. Ngonga Ngomo, A.: Parameter-free clustering of protein-protein interaction graphs. In:

Proceedings of Symposium on Machine Learning in Systems Biology 2010. (2010)
7. Scanniello, G., Marcus, A.: Clustering support for static concept location in source code. In:

ICPC. (2011) 1–10
8. Karedla, R., Love, J.S., Wherry, B.G.: Caching strategies to improve disk system perfor-

mance. Computer 27 (1994) 38–46
9. Ngonga Ngomo, A.C., Schumacher, F.: Borderflow: A local graph clustering algorithm for

natural language processing. In: CICLing. (2009) 547–558
10. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: Dbpedia sparql benchmark - perfor-

mance assessment with real queries on real data. In: International Semantic Web Conference.
(2011) 454–469

11. Kanjirathinkal, R.C., Sudarshan, S.: Graph clustering for keyword search. In: COMAD.
(2009)

12. Kumar, M., Agrawal, K.K., Arora, D.D., Mishra, R.: Implementation and behavioural analy-
sis of graph clustering using restricted neighborhood search algorithm. International Journal

of Computer Applications 22(5) (May 2011) 15–20 Published by Foundation of Computer
Science.

13. Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms. Data
Mining and Knowledge Discovery 3 (1999) 131–169

14. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The lru-k page replacement algorithm for database
disk buffering. SIGMOD Rec. 22 (1993) 297–306

15. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distribu-
tions: Evidence and implications. In: INFOCOM. (1999) 126–134

16. Karakostas, G., Serpanos, D.N.: Exploitation of different types of locality for web caches. In:
Proceedings of the Seventh International Symposium on Computers and Communications.
(2002) 207–2012

17. Hou, W.C., Wang, S.: Size-adjusted sliding window lfu - a new web caching scheme. In:
Proceedings of the 12th International Conference on Database and Expert Systems Applica-
tions. (2001) 567–576

18. Arlitt, M., Cherkasova, L., Dilley, J., Friedrich, R., Jin, T.: Evaluating content management
techniques for web proxy caches. SIGMETRICS Performance Evaluation Review 27(4)
(2000) 3–11

19. Tanenbaum, A.S., Woodhull, A.S.: Operating systems - design and implementation (3. ed.).
Pearson Education (2006)

20. Jin, S., Bestavros, A.: Greedydual* web caching algorithm – exploiting the two sources of
temporal locality in web request streams. In: 5th International Web Caching and Content
Delivery Workshop. (2000) 174–183

21. Schlitter, N., Falkowski, T., Lässig, J.: Dengraph-ho: Density-based hierarchical community
detection for explorative visual network analysis. In Springer, ed.: Proceedings of the 31st
SGAI International Conference on Artificial Intelligence. (2011)

22. Schaeffer, S.: Stochastic local clustering for massive graphs. In Ho, T., Cheung, D., Liu, H.,
eds.: Proceedings of the Ninth Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD-05). Volume 3518 of LNCS., Springer (2005) 354–360

23. Felner, A.: Finding optimal solutions to the graph partitioning problem with heuristic search.
Ann. Math. Artif. Intell. 45(3-4) (2005) 293–322

24. Alamgir, M., von Luxburg, U.: Multi-agent random walks for local clustering on graphs. In:
ICDM. (2010) 18–27

25. Spielman, D.A., Teng, S.H.: A local clustering algorithm for massive graphs and its applica-
tion to nearly-linear time graph partitioning. CoRR abs/0809.3232 (2008)

26. Biemann, C., Teresniak, S.: Disentangling from babylonian confusion - unsupervized lan-
guage identification. In: Proceedings of CICLing-2005, Computational Linguistics and In-
telligent Text Processing, Springer (2005) 762–773

27. Young, N.E.: On-line file caching. In: Proceedings of the ninth annual ACM-SIAM sympo-
sium on Discrete algorithms. (1998) 82–86

28. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature
(January 2006)

29. Ho, Y., et al.: Systematic identification of protein complexes in saccharomyces cerevisiae by
mass spectrometry. Nature 415(6868) (January 2002) 180–183

30. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome.
Proc Natl Acad Sci U S A 98(8) (April 2001) 4569–4574

31. Krogan, N., et al.: Global landscape of protein complexes in the yeast saccharomyces cere-
visiae. Nature (March 2006)

